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Bubble propagation in a helicoidal molecular chain
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We study the propagation of very large amplitude localized excitations in a model of DNA that takes
explicitly into account the helicoidal structure. These excitations represent the “transcription bubble,” where
the hydrogen bonds between complementary bases are disrupted, allowing access to the genetic code. We
propose these kinds of excitations in alternative to kinks and breathers. The model has been introduced by
Barbi et al. [Phys. Lett. A253 358(1999], and up to now it has been used to study on the one hand low
amplitude breather solutions, and on the other hand the DNA melting transition. We extend the model to
include the case of heterogeneous chains, in order to get closer to a description of real DNA; in fact, the Morse
potential representing the interaction between complementary bases has two possible depth#\-eheifat
one forG—C base pairs. We first compute the equilibrium configurations of a chain with a degree of uncaoiling,
and we find that a static bubble is among them; then we show, by molecular dynamics simulations, that these
bubbles, once generated, can move along the chain. We find that also in the most unfavorable case, that of a
heterogeneous DNA in the presence of thermal noise, the excitation can travel for well more than 1000 base
pairs.
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[. INTRODUCTION tion of the original discrete equations. In both cases there is
usually a nearest neighbor interaction and a site potential; in

In the attempt to describe some aspects of DNA functionthe continuum limit generally the field equation under study
ing, the theory of nonlinear dynamical systems has found ais of the Klein—Gordon type:
interesting application to this important biological structure.

In spite of the awareness of the complexity that characterizes P 2,92¢, ouU
most of the dynamical processes taking place in biological — =V~ - (1)
. ; . x> 9
systems, where very often the necessary trigger is constituted
by the temporary interaction of different objects, there is
nevertheless an effort, in the research in biological physicszonsider the problem of the existence of localized stationary
to grasp some essential features with simple models. solutions. We know that for equations lik&) localized so-

In this work we are interested in the propagation of very|uti0nS, where at both sides of the excitation the figlis at
large amplitude bubbles, that should be very important in théhe minimum ofU, are possible only iU has degenerate
description of the process of transcription. In this respect, theninima; then¢ has a kink configuration and we have a
main appeal of one-dimensional nonlinear models is theitopological soliton, which implies a displacement of a whole
possibility to sustain localized excitations, of which our side of the chain. One of the most used examplgd)at the
bubbles are an example. In this direction there have beesine-Gordon equation. The stationary solutions really are
works based on some models where the essential degree $ifitic, i.e., they are equilibrium configurations, that are ob-
freedom of each site of the chain is related to the opening ofained by solving the Newton-type equatimlﬁ(&zcﬁlaxz)
the hydrogen bonds between the complementary bases of thedU/d¢, and localized solutions, the kinks, are found by
double stranded DNAfor a review see, e.g., Refl,2] and  choosing appropriate “initial conditions” in this equation. If
references therejn the original model equations were discrete, the equilibrium

The important points to address for any given model areconfigurations are such that their envelope has a kink struc-
the existence and the stability of localized excitations, bothiure which is very close to that of the continuum equation,
stationary and moving; after that the problem of their forma-with the center exactly on one sii@dd kink), or in the
tion has to be considered. In this section we give a very briemiddle between two siteeven kinks (see Ref[3], where
account of the situation in models with one degree of freealso the problem of the stability is considered
dom per base pair, limiting ourselves to the problems of In models where the discreteness is taken into account,
existence and stability. the problem of solutions with a topological index can be

Let us begin with homogeneous chains. We can start makeircumvented; in fact, also with site potenti&lswith a non-
ing a distinction between models that do not neglect the disdegenerate absolute minimum, it is possible to have station-
creteness of the system, and models that are treated in tlagy localized excitations, in the form of breathers, in which
continuum limit, either from the start or after the approxima-only few sites are coherently involved with a non-negligible

amplitude in a nonlinear oscillation with a given fundamen-
tal frequency(for the mathematics of breathers in discrete
*Electronic address: campa@axiss.iss.infn.it nonlinear lattices and the conditions for their existence and
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stability see Refg.4—6]). Now there is an additional degree of the topological index. However, it is plausible that, if we
of freedom in the choice of the localized solution, namely thewant to describe with a breather a region where the bond
variation, in proper ranges, of the fundamental frequency. Ibetween the complementary bases is temporarily broken, to
analogy with the situation that arises with kinks, a breathegllow access to the genetic code, this breather must be wide
with a given fundamental frequency can be centered on oné.e., the number of sites essentially involved in the motion is
site, which has the largest amplitude of oscillatimdd ~ Not very small and of very large amplitude; unfortunately,
breathe), or on two sites, which have the largest identicalthe probability that a breather is stable greatly decreases
amplitudes(even breathgr wh.en its width increases and yvhen its ampll|tude is lafge .
We now turn our attention to the stability of these solu- (tis second point can be easily guessed, since for potentials
tions. The stability of a static kink configuration, in lattice that allow dissociation, large amplitude means low funda-
models approximated bgl), requires the positive definite- mental fr_equency, and th_ereforg a strong probability of reso-
ness of the Hessian matrix of the total potential energy. Inhance with the phonon dispersion curve , _
stead for a breather the stability is checked through the lin- N this work it is our purpose to show that, with a given
earization of the equations of motion around the stationanynodel with two degrees of freedom per base pair, it is pos-
solution; the transformation of the perturbation in oneSiPle to put together some of the advantages of kinks and
breather period gives a linear application, whose Spectrurﬁreathers, ie., respecnvely_, a_good stability with respect to
determines the stability propertig&loguet analysis the movement, and a local excitation that does not need a topo-

breather is stable if there are no eigenvalues with modulu{gical index. We will show that these large amplitude solu-
greater than 15]. tions of the model have a satisfying stability also with het-

The important point to study is that of the moving Capa_erogengity and with thermal noise‘.‘ We thin.k that the,s’e
bilities of localized excitations. If we are interested in mov- Properties can represent those of a “transcription bubble.
ing solutions of Eq.(1), the problem is easily solved. Any e model has been proposed by Babal. [14], and it
static solution, in particular a localized one, can be transiS an evolution, that takes the hellcmdal structure _epr|C|tIy
formed to a moving one, with speed<u,, through a Lor- into accoun_t, of the Peyrard—BishdpB) quel. This Iagt
entz boostwith “speed of light” v,); its profile will only be ~ Model was introduceflL5] to have a dynamical explanation
modified by the Lorentz contraction. If the original model is ©f the melting transition, opposed to methods that offer only
discrete and Eq(1) is only its approximation, then the move- equilibrium estimates of th_e probability of bo_nd disruption
ment of the localized excitation will be associated to an enl16—18. A satisfactory melting curve was obtaingi®], and
ergy loss through phonon radiation but generally the kinKater the melting of heterogeneous chains and of heteroge-

retains a good stability. In Reff7] one can find the treatment "€0US oligonucleotides has been studizd—-23. The heli-
of this phonon dressing of the moving kink. coidal model introduced in Ref14] was there used to build

The study of moving breathers is more difficult. While the &@PProximate low amplitude solutions through the method of
existence of stationary breathers seems to be quite indepeffl® Multiscale expansiofp4], and in Ref.[25] the melting
dent of the characteristics of the site potential, at least foff@nsition was investigated. _
sufficiently small coupling between different sitg5], the In Sec. Il we introduce the model and we compute its
presence of exact moving breathers is associated to son§@uilibrium configurations, with their staplllty propemes. In
special integrable Hamiltoniarisee Ref[6] for a review. S_ec. I we shoyv the results of_our MD simulations, together
In the other, generic cases, the common approach is to studyith an approximate computation of the features of the mov-
the stability spectrum of stationary breathers, making a conl!9 bubbles. In Sec. IV we present our discussion and draw
nection between some of the elements of the spectrum arPMe conclusions.
the “sensitivity” to movemen{8,9]. The absence of a zeroth

order moving solution, analogous to the boosted kink of Eq. Il. MODEL
(1), makes the treatment of stability of moving breathers less
approachable. Our starting point is the model introducéd a somewhat

If we consider heterogeneous chains, there are of coursgifferent version in Ref. [14]. The bases can move only in
more problems, especially regarding the stability of movingplanes perpendicular to the helix axis; besides, the center of
excitations, in particular breathers. The amount of work hasnass of the base pair is held fixed, and the two complemen-
been less extensive. There have been studies on nonline@ry bases move symmetrically with respect to the axis of the
localization in chains with impuritiegl0], on kink propaga- molecule. Then for each base pair there are two degrees of
tion through regions with mass variatighil], MD simula-  freedom:r,, is the distance between each one of the comple-
tions in a sine-Gordon model of DNAL2]; see Ref[13] for  mentary bases in theth base pair and the helix axis;, is
a review of results on disordered systems in the continuunthe angle that the line joining the two complementary bases
limit. makes with a given direction in the planes where the bases

Let us summarize what the main problems with kinks andmove. The potential energy is given by
breathers are if we want to consider them as good candidates
for the local openings needed during the transcriptions. As

_ —a(r,—Rg) _ 1124 1 2
we have seen, the stability is a less severe difficulty for U_En: {Dn(e 2RI —1)2+ 3c(rn—rn)
kinks. For this reason they could be preferable. On the con-
trary, the breathers have the advantage to avoid the problem +3K[Lny10—Lol%, (2
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whereL ,, is the distance between neighbor bases on thevorking hypothesis, that this external action can be repre-
same strand, and as a functionrgf, r,,; and 6,,,— 6, sented by a partial unwinding of one of the extremes of our

=A4, is given by chain, considered as the interaction site. We will show that
this mechanism can give rise to a travelling bublilee
Ln+1’n=\/h2+rﬁ+1+rﬁ—2rn+1rncosA0n, (3)  “transcription bubble’), in which several base pairs are

open; this bubble, that appears to be very stable in a homo-
whereh=3.4 A is the fixed distance between neighbor basegeneous chain initially at rest, is interestingly long lived also
planes andR,=10 A is the equilibrium value of,; Ly is  in the case of a heterogeneous chain and with thermal disor-
the same function computed far,,;=r,=R, and A6, der.
=0,=u/5 (10 base pairs per helix turnTherefore the In the remaining part of this section our aim is to give an
equilibrium configuration is that with,=R, andA#,=0,  analytical background to the results, obtained by molecular
for eachn, which gives the system its helicoidal structure. dynamics simulations, that will be presented in the next sec-
The natural helicity is right handed, and for convenience wédion. Since the essential dynamical process that we will ob-
take this as the positive rotation for the angtgs Actually, ~ serve is a local opening travelling along the chain, we want
equilibrium configurations are also all those in which anyto show that this movement can be considered, in an adia-
A6, is chosen indifferently+ ®,; however, they are sepa- batic approximation, as a succession of equilibrium configu-
rated by the fundamental one by potential barriers, that in oufations, similarly to what happens with the travelling of
simulations are never crossed. The first two term&@jrare  kinks. Consequently, in Sec. Il A we will study the equilib-
the same of the original PB modgl5], which hasr,, as the  rium configurations of our system: we will show how a chain
only degree of freedom per base pair: there is a Morse po¥ith some uncoiling, caused by suitable boundary conditions
tential with Ry as the equilibrium distance, and a harmonicli-e., if 6, and 6y, are held fixed at values such that
interaction between neighbor base paistacking interac- O+ 1— 6o=S)-0A 6,<(N+1)0], can have different equi-
tion); there can be two different values f@r,, Da_t for librium configurations. The simplest one, for a homogeneous
A-T base pairs anBs_c for G—C base pairs. Itis generally chain, is given by a homogeneous configuratiger and
assumed thaDs_c=3D,_r. The last term in(2) describesa A 6,=A¢ for eachn, for certain values of andA¢; for a
restoring force that acts when the distahckbetween neigh- heterogeneous chain, wheg,=D,_1 for somen and D,
bor bases on the same strand is different ftognThe model =Dg_¢ for the other values of, the configuration is not
has been introduced in Rdfl4] without the second term in qualitatively very different from the previous, although the
(2), essentially attributing all the stacking interaction to theprecise equilibrium values af, andA 6, depend on the se-
last term, and with an additional three-body term propor-quence. Another equilibrium configuration in the homoge-
tional to (6, 1+ 0,—1—26,)2, to eliminate the equilibrium neous case, the one in which we are interested, is one in
configurations with some\ 6,= — 0. In this form the au- which a small region(about 20 base pairss completely
thors have studied small amplitude breatherlike solutionsppen, and at both sides and A 6, decay rapidly to homo-
with the envelope described by the nonlinear Sdimger  geneous values. Again, in the heterogeneous case, the depen-
equation. In Ref[25] the statistical mechanics of mod&) dence on the sequence does not alter qualitatively the pic-
has been studied, the authors being interested in the meltirigre. In Sec. IIB we will briefly treat the stability of these
transition of DNA; in this case the difference frof#) was  equilibrium configurations.
given by a replacement of the coupling constaibty a cou-
pling of the formce ('n+17=2R0) " decreasing withr,,; A. Equilibrium configurations
+r, increasing. Besides, the restoring force represented by
the last term was cast in another form, witffixed (=Lo) base pairs, and take a proper unit of mass, the equations of
and h variable. In both works a homogeneous DNA ( motion deriving f

. . g from(2) are

constant inn) was considered. We use the more complete

If we neglect the mass variation betwerT andG—-C

structure used in Ref25], with the second term if2) more ) . gu

related to the stacking interaction, and the last term more rn—rn¢9ﬁ=— o

related to the rigidity of the two single strands, withvari- "

able andh fixed. For simplicity, we do not insert a decaying ) o ou (4)
coupling: this last feature has been found, already in the F20,+2r b= ——

original PB model19], as being essentially responsible for
sharpening the melting transition, which happens at highejne equilibrium configurations are those that make the right-
temperatures than those we are interested in here. Also, thg\ng sides vanish. Therefore we have to solve

three-body term used in R¢fl4] was not necessary, since in

our simulations, as we have already pointed out, we never 2aD,(e 23(m~Ro —g=am~Ro)y 4 cAr

had a crossover in the sign 4f6, .

The spirit in which we study the model represented 2y +K Lo+an— LO[r CoSA 6, —r ]
is the following. We consider a chain of a given length, with Ln+1n et non
fixed boundary conditions. We know that an interaction with L L
an enzymatic completwith RNA polymeras}sls necessary + M[rn_l cosAf, ;—r,]t=0, (53
to trigger the process of transcription. We take here, as a Lnn-1
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L -L Lono1—L
MrnﬂrnsinAan— nn-t Orn,lrnsinAﬁn,l
Ln+1n Lon-1
=0 (5b)
for n=1,... N; here Ayr,=r, 1+r,_1—2r,. From the

structure of Eq(5b) it is clear that any solution df) has to

be such that the quantity represented by, say, the first term in
(5b) is a constant as a function of Let us begin considering

a homogeneous chain. Then of course the simplest solution
is to have bothr,, and A 6,, constant inn. In this case also
Ln+1n is constant inn. Therefore, posing,=r and A6,

=A¥, and equatind.; 1 to a constant,, one can express
A6 as a function ofr andL; then, substituting in5a) this

function, together withL,,,,=L andr,=r, one can find
(numerically the equilibrium value (which will depend on <
L). Going back also the equilibrium valueé can be com- =
puted. If the chain is not infinite and there are fixed boundary
conditions (for n=0 andn=N+1), then, for the equilib-
rium it is required that alsog=r\,.1=r and Afy=A0

=A4. It is clear that the fundamental equilibrium configura- 10 L

tion (r=R, and A9=0,) is obtained forL=L,. For L 0 5 10 15 20n 25 30 35 40

<Ly we haver>R, and A #<®, (uncoiling, while for L

>L, we haver<Ry and A >0, (overcoiling. When the FIG. 1. Equilibrium configurations for a homogeneous chain

chain is heterogeneous, the corresponding equilibrium soluwith D,=D_¢ for eachn (a), and for a heterogeneous chain with
tion can be found from the homogeneous one with an iteraa random choice ob,, (b). We show only the central region, that
tive procedure explained in Appendix A. The solution will yvith the bubble. In this figure and in Figs. 3—7 the unit of length
depend on the sequence of thg's; however, it will not be 1S A

qualitatively very different from the homogeneous case. The

interesting equilibrium configuration is of course that in In the homogeneous case, the configuration is symmetric
which we have an open region. In this case, although the firsit both sides of the bubble. Besides the obvious translational
term in (5b) is constant im (and equal, say, t8), L1, is  invariance(for the infinite chain, it is possible to have a
not itself a constant. We have developed a procedure to congonfiguration centered on one site with the largest opening,
pute these configurations. Here we only give a sketch; moras in Fig. 1, or on two sites with equal and largest openings

details can be found in Appendix B. In principle, from (the analogous of what happens also for the discrete kinks
and breatheps For brevity, in the following the bubble cen-
(Lhrin—Lo)rnsarnsinAd,=sbl, 1, (6)  tered on one site will be denoted odd bubble, and that cen-

tered on two sites even bubble. In the heterogeneous case,
it is possible to obtain 6, as a function of ,,;, r,,, ands; translational invariance is lost, but it is not difficult to guess,
substituting in(5a), we can therefore obtain, ; as a func-  in view of the method described in Appendix A, that an
tion of r,, r_;, ands; in this way, starting from the values equilibrium configuration occurs for any site or couple of
for two contiguous ,, we can compute site by site the equi- neighbor sites chosen as the center of the buldieiously
librium configuration. With a proper choice of the valuespf now not symmetrig
we obtain a solution in which there is a region, of about 20
base pairs, wheng,> R, in such a way to stay in the plateau o
of the Morse potential; in that region the uncoilingd 4, B. Stability
<0,) is marked. At both sides of the open region thés In order for an equilibrium configuration to be stable, the
decay very rapidly to a value slightly larger thRg and the  Hessian matrix of the potenti&l must be positive definite at
A6,’s to a value slightly smaller tha®,. As before, after that point of configuration space. In that case, the square
the computation has been performed for a homogeneousots of twice the eigenvalues of the matrix give the proper
chain, with the procedure explained in Appendix A we canfrequencies of the small oscillations around the equilibrium.
obtain also the configuration for a heterogeneous chain. Thé/e will consider here, as an example, the resultsder
two cases do not differ qualitatively. In Fig. 1 we show two —0.273[see Eq.(6)], for the cases of the odd and the even
examples of equilibrium configurations: one for a homoge-bubble. However, before treating our particular example, we
neous chain and another for a heterogeneous chain, in whickant to note the following fact concerning the stability of
the sequence oA-T and G—C has been chosen randomly; these kinds of configurations. We have found that, depending
we present only the graphs concerning the radial degrees oh the choice of the constastand on the values of the
freedomr,,. model parameters, both stable and unstable cases occur, and
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FIG. 3. Successive configurations in a homogeneous dladlin

FIG. 2. Eigenvector of the smallest eigenvalue of the Hessian, , S .
matrix of a homogeneous chain with 100 base pairs. The full Iin;bn S equal toD,_r) of 2500 base pairs initially at rest in the fun-

corresponds to the radial displacemenwhile the dashed line to damental equilibrium configuration. In the vertical axis we have

the transversal displacemdrgé. In the vertical axis we have arbi- Ar=r—R,. The pubple t.ravels towards the right. It has peen
trary units., formed by an unwinding given by an increase of 1.25 radiartin

In order to show all the configurations in a single graph, in the
vertical position of each one there is an offset of 1 with respect to
often if the odd bubble is stable, then the even bubble ishe previous.

unstable, and vice versa. Then one of the smallest eigenval-

ues of the Hessian matrix in the stable case is associated to IIl. RESULTS

the movement of the bubble along the chain. To be more

precise' if the bubble is pushed out of the equ”ibrium con- In this section we show the results of the simulations per-
figuration by exciting the eigenvector associated to this smaflormed. We have simulated a chain of 2500 base pairs, with
eigenvalue, then, if the excitation amplitude is high enoughflxed bqundary condltlc_)ns. The parameters of the model have
the motion will go beyond the linear regime and, instead ofbeen given the following values: the depths of the Morse
performing an oscillation, the bubble will move in one direc- Potential are DA—_T1:O'05 eV andDg_c=0.075 eV; the
tion. During this movement along the chain there will beW'dth IS a:.4 A% the conzstant. of the harmonic stac_klng
instants(in the adiabatic approximatigin which the bubble |ntera(_:t|on Isc=0.05 fV/A , while that of_the restoring
traverses in turn the equilibrium configurations constituteomrce isK=0.14 eV/A®; we have already given the values

by the odd and the even bubbles. We have here a suorfL [ 3¢ L B2 30 L SIS B0, e (8 LR e
similarity with the situation that arises with kinkg], and an b 9 '

analo ith the breather sensitivity to t that 27]. As anticipated before, the travelling bubble is formed
9y Wi r r sensitivity 1o movement that w y imposing a partial unwinding at one end of the chain.

mentioned in the Introduction. ) ) After that, the open region travels towards the other end. Let
We now turn to our example wits=—0.273 and with ;5 give some more details on the process by which the open
the same parameter values that we employ for the simulgugion is formed. We have fixed boundary conditions. At the
tions (we will give these values at the beginning of the nextjeft end of the chain we begin to make an unwinding. This is
section. We have performed our calculations on a chaindone by decreasing the angled,= 6;,— 6, between the
with 100 base pairs, with the bubble in the middle; this“fixed” site at the left of the chain and the first site, i.e., by
should be sufficient to avoid boundary effects. For the oddncreasingé,. This causes an opening of the first few sites
bubble the Hessian matrix is positive definite. Most of thebecause of the last term in the potential ene@y During
proper frequencies are associated to phononic excitations; he process of formation of the open region, also phonons are
fact, the corresponding eigenvectors are spread throughoateated, which begin to travel faster than the bubble. At the
the all chain. But a small number of eigenvalues corresponénd of the process we observe the bubble travelling towards
to eigenvectors that have components which are not neglthe right. We have used different amplitudes for the increase
gible only on the sites of the open region. Therefore, theyof 6, that will be specified in the following for the different
represent perturbations of the bubble. Among these, there gases.
the smallest eigenfrequen¢26]. In Fig. 2 we show the ei- We begin by showing the results of the simulation per-
genvector corresponding to the smallest eigenvalue. This i®ormed for a homogeneous chain initially at rest in the fun-
clearly associated to the movement of the bubble, accordingamental equilibrium configuration. We have increasigd
to what we pointed out in the previous paragraph. This idy 1.25 radians. In Fig. 3 we present the configurations at six
proved by the fact that in the spectrum of the even bubble thdifferent times. It can be noted from the graphs that the trav-
eigenvalues are all positive except one. The positive eigerelling bubble is practically stable. We have even found that,
values are very similar to the corresponding ones of the odihen it reaches the end of the chain, it bounces back. An-
bubbles, while the negative one is very close, in absolut@ther thing to be noted, and that is valid also in the other
value, to the smallest of the odd bubble. The smallness dituations that we will show, is that outside the bubble the
this value shows that the open region is very “sensitive” toradial coordinate , is practically in the equilibrium position
movement8]. Rg, and correspondingly there is no uncoiling. This appears
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FIG. 4. Same as Fig. 3, but for a heterogeneous chain, with FIG. 5. Same as Fig. 3, but for a chain in thermal equilibrium at
random choice of thé,’'s, and whered, has been initially in- 300 K, and where, has been initially increased by 2 radians.
creased by 2 radians.

to be in contrast with the results of the preceding sectiong€neous chain. For the second case, we have used the same

concerning the structure of the equilibrium configurations.base pair sequence that has been adopted for the simulation
We remind that we found a degree of uncoi”ng’ and a Va|u@f the system |n|t|a“y at rest. Let us first consider the homo-
of r,, somewhat larger thaR,, at the sides of the bubble. At geneous chain. We have made a simulation in which we have
the end of this section we will try to give an argument toincreasedf, by the same quantity, 2 radians, used in the
show the reason why the sides of a travelling bubble can bBeterogeneous chain at zero temperature. In this way we
in the equilibrium configuration. This fact is probably a good could make a comparison, under the same initial excitation
point, in view of a possible biological significance of the process, between the robustness of the bubble against hetero-
dynamical processes of this model, and we will comment orgeneity and against this level of thermal noise. Figure 5
that in the last section. shows the configurations again at six successive times. From
In Fig. 4 we show the situation that arises in a heterogethe inspection of Figs. 4 and 5 we can note the following
neous chain, again initially at rest in the fundamental statepoints. The amplitude of the bubble is greater in the hetero-
The sequence of base pairs has been chosen at random. \@&neous chain initially at rest; nevertheless the distance trav-
can note that the bubble progressively decreases its ampklled is somewhat greater in the homogeneous chain at 300
tude, contrary to what happens in the homogeneous case, alkd Therefore it seems that the interaction with the phonon
in fact in the last configuration practically we do not see itbath at this temperature is less effective, in taking energy
any more. However, before disappearing the excitation hagway from the bubble, than the modes of fluésordered
travelled well beyond 1000 base pairs. Here we have inheterogeneous chain. Of course, it is possible to increase the
Creagedeo by a greater quantity than before, name|y by 2 lifetime of a bubble by increasing the Strength of the initial
radians. It is not difficult to understand the reason of theexcitation. In Fig. 6 the configurations obtained for the ho-
different behavior between homogeneous and heterogeneoli¥geneous thermalized chain whégis initially increased
chains. In the first case the spectrum of the Hessian matrix iRy 2.8 radians. We can see that the bubble has still a large
the equilibrium positions for givea[see Eq(6)] is the same amplitude when it has almost reached the end of the chain; as
for all odd bubbles and the same for all even bubbles, indein the case of the zero temperature, we have found that it
pendent of the locatiofat least for infinite chains, but for bounces back.
finite chains this is true to a high degree of accuracy, unless The last case that we present is that of the heterogeneous
the bubble is very close to one end of the chaiherefore, ~chain at 300 K, in Fig. 7; the initial increase #y is 2.8
in the adiabatic approximation, the dynamical situation of aradians. We see that, in spite of the two possible sources of
bubble repeats periodically every site that has been travelledisturbances to the localized excitation, heterogeneity and
In a heterogeneous chain the Hessian matrix is, in general,
different at any location, thus the above argument does not
apply, and a faster energy loss takes place. Nevertheless the
lifetime of the bubble is still satisfying. It is possible to ar-
gue, in a qualitative way, that heterogeneity acts on the
bubble only through the few sites belonging to its two ends,
since the other sites of the bubble are in the plateau region of
the Morse potential, where there are no differences between
the two types of base pairs. With the exposition of the results
obtained for chains at room temperatures, we will touch
again this point. ‘ ‘ . .
We have made simulations in which we have produced, 0 500 1000 n 1500 2000 2500
with the same procedure as before, a localized excitation; but
now the chain is initially in thermal equilibrium at 300 K. FIG. 6. Same as Fig. 5, but with, initially increased by 2.8
Again, we have studied both a homogeneous and a hetereadians.

Ar(A)
Loanmwbhoaowow
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FIG. 7. Successive configurations in the same heterogeneous Y

chain of Fig. 4, but in thermal equilibrium at 300 K and witg
initially increased by 2.8 radians.

thermal noise, the bubble still travels for about 1300 bas

pairs.

A. Moving open regions

In order to show how the bubbles move along the chain,
we employ here a simplified version of the model. We make
this choice since in this way we can have manageable €Xiherec’ =c—uv
pressions. However, we believe that the same kind of mech
nisms happen in the complete system, the difference bein

PHYSICAL REVIEW E 63 021901

Py Py 1oy ap 1 3¢
—=B?>—+ —-B>—+ —+-AB—.
o2 . X2 12° ax* 2AB X 3ABax3

(8b)

We now pose {?¢lat?)=v?(d*¢plox?) and @yl it?)
=0v2(6%yl9x?), and in the following we consider the expres-
sions that are found keeping only the first order termsan
From Eq.(8b) it is possible to obtain an expression for the
spatial derivatives ofs as a function ofp; the one that is of
interest to us is

=d| 1 v? 2A 1 v? A 79 9
a B e e @

é(vith the arbitrary constard. Substituting in(8a) for d/dx

and 33yl 9x® we find an equation foep:

2

P
o 1+
BZ

P —Un(e)+g

A2
¢+2§02¢2l,
(10
2[1—(2A?/3B?)] and g=—2dAB. Let us

Ef)’egin considering the static cas€=0. Then, Eq.(10) re-

guces to

that the expressions would be much more involved, requiring

the inversion of trigonometric functions.

The fundamental equilibrium configuration is that with

rn=Rg andd,=n0®y; we here expantl,; 1, [see Eq(3)] in

power series and keep only the first order terms ip (
—Ry), (rhn+1—Ryp), and (¢,—n®,). Such a procedure is not
entirely consistent, since we do not make an analogous e
pansion in the Morse potential. However, we have checke

numerically that the linear approximation far,,,, is not
bad in a quite large range of variability of, r,,,; andA 6,

and more importantly this simplification is done only for

illustrative purposes. Calling/,=r,—Ry and z,=Ry(0,

—n®,), and neglecting the kinetic terms, the equations o
motion of this simplified system in the homogeneous cas

are

yn=2aD(e™?®n—e” ) +c(Yn 1+ Va1~ 2Yn)
_AZ(Yn+1+yn71+ 2yn) _AB(Zn+1_ anl)r (73)

in: Bz(zn+1+zn—1_22n)+AB(yn+l_yn—1)u (7b)

where the positive coefficientd and B, coming from the
power expansion of L,.;,, are given by A
=2JK(Ry/Lo)SiA(0®y/2) andB= K (Ry/L,)sin®,. Going
to the continuum limit, we pose—x, y— ¢, and z— .

Taking into account partial spatial derivatives up to a suit-
able degree, and denoting with,, the Morse potential, we

obtain the following equations

P IUpm PP I AP
—=- —4A’p—A’— +c——2AB—
at? o ¢ x> X3 ax
1 3By
- §AB§, (8a)

1%

J
C—I—@[—Um(¢)+g¢15—£V(¢)-

We see that with a positivg (i.e., with d<0) we have the

11

Jpossibility of a localized excitation; actually, it is not diffi-

ult to see that it must be<0g<3aD. In fact, in that case

(¢), that diverges exponentially te- for ¢— —o and
linearly to +o for ¢— +o, has a local maximum for a
(smal) positive value¢* and a local minimum for a larger
value of ¢. These two values are given by the two solutions

pf the equation {/d¢$)Uy=g. Then, solving the Newton-
dype equation(11) with a “total energy” V(¢*), we have

eithergp= ¢* or ¢p— ¢* for x— * o, with a localized region
where ¢ reaches a maximum; this maximum is given by the
value of ¢, to the right of the local minimum, whenré( ¢)
=V(¢*). In this case, at the sides of the open region we also
have @ldox)—d—2(A/B)$* <0, i.e., a small uncoiling.
Summarizing, in order to have a static localized solution a
constantd<<0 is necessary.

We now go tov?>0 (although sufficiently small since we
have made an expansion irf). We rewrite Eq.(10) with
g=0 (i.e.,d=0):

P d A? J
¢/l—=—-— R

NG 2
(12)

The differences from before are that the divergenc@/6é)

for ¢— + is now quadratic, and, more important for our
argument, the local maximum is fab=0. Therefore, it is
possible to have travelling localized excitations, at both sides
of which the field¢ goes to 0, and so does the uncoiling
Al dx.
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Although we have used here a simplified model, it is verydestroyed by perturbations or by thermal disorder, although,
likely that in the complete system a very similar argumentof course, a kink can lose energy by phonon radiafiti
applies. This should explain why in the simulations we find,Breathers are nontopological objects, but some simulations
at the sides of the open region, normal twisting. [29] have shown that they can survive perturbations. How-
ever, the larger their energy, the larger their tendency to re-
main pinned 29,30; besides, as we mentioned in the Intro-
duction, if we look for a breather with a very large

In this work we have studied a model of DNA with two amplitude, as should be required to allow exposition of the
degrees of freedom per base pair. The model has been bugenetic code, then we will not find a stable excitation.
explicitly to represent the helicoidal structure of DNA]. The model used in this work, with two degrees of free-
We have analytically shown that, under some uncoiling, thalom per base pair, has shown to possess the positive features
system exhibits stable equilibrium configurations in whichof both kinks and breathers: although there is no topological
there is a small region, of about 20 base pairs, where thindex to prevent eventual decay of the excitation, neverthe-
hydrogen bond between complementary bases is completelgss the “transcription bubble” is quite stable. A necessary
disrupted, allowing access to the genetic code. Then, througtondition for biological plausibility is that heterogeneity
MD simulations, we have found that these open regions camust not prevent propagation of the localized excitations in
travel along the DNA chain, also when both thermal noisethis class of models. We have seen that this is our case, also
and heterogeneity are present. if certainly the life of the bubbles is shorter if the chain is not

In connection with our results, we would like to mention homogeneous. We have argued that this is due to the very
what has been found in Ref25] concerning the statistical structure of the bubble: most of the sites belonging to it are
mechanics of this modéthe small differences in the Hamil- in the plateau region of the Morse potential, where there are
tonian of Ref.[25] should not be important for this qualita- no differences between base pairs; only the few sites at the
tive poind. In that work the melting transition has been stud-two ends of the bubble experience these differences.
ied. The isothermals in the plane with the thermodynamical We have chosen to generate the open region through an
variables corresponding to torque and uncoiling show clearlyinwinding at one of the ends of the chain; this should simu-
a first order phase transitigthe computations are performed late the initial enzymatic action. We would like to say more
for an infinite chain; during the transition, in which the un- on the spirit in which this position has been taken. There
coiling increases at constant temperature and torque, the twtave been attempts to see how breathers can form spontane-
coexisting phases are interpreted as one with normal distan@sly during the dynamics, starting from modulational insta-
between the complementary bases, and one with the hydrdility, and then growing through collisions, that on the aver-
gen bonds disrupted. At the end of the transition, only theage favor the growth of the larger excitatiof80,31. We
phase with disrupted bonds remains. It is natural to think thatlid not show similar results that we have obtained with this
these two phases can be put in correspondence with the twnodel, concerning the formation of a bubble out of thermal
possible equilibrium configurations that exist in a chain withexcitation. However, this kind of process lacks any possibil-
a degree of uncoiling, namely that with a bubble and thaity of control about the particular group of sites where it
without, taking into account that our simulations are per-begins to take place. Since it is certain that there is an enzy-
formed at a temperatur@r at a torqugbelow that required matic control on the temporal and spatial beginning of the
for the melting transition. transcription, we have adopted the point of view of mimick-

We have noted in the preceding section that the travellingng in some way this initial action. Another point to be noted
bubbles that have been generated in our simulations shoig related to the energetics; in the real process of transcription
normal coiling at the sides of the open region, and in correenzymes are present all the time; this is in contrast with the
spondence the hydrogen bond between complementary basstsategy generally adopted, namely the study of simple au-
is at the equilibrium distance. This suggests the possibility taonomous systems. However, one could argue that, if the
have more than one travelling bubble at the same time. Thiautonomous system shows dynamical processes that already
fact resembles the situation that arises with kinks: only onenjoy a good degree of stability, then the enzymatic dynami-
static kink can be preseriand this is easy to understand, cal action(of course now we are not concerned with the
since the exact solution reaches the positions of the minieontrol activity), that should increase this stability and then
mum of the potential only asymptoticallybut for travelling the lifetime of the process, requires a relatively small amount
kinks the situation is differenf28]. Therefore, this model of energy.
allows transcription to take place at the same moment in At the beginning of the Introduction we pointed out that
different portions of the chain. these models are way too simple to represent faithfully ob-

In the construction of nonlinear dynamical models of bio-jects as complex as, in general, biological systems, and that
logical systems, one of the main properties to satisfy is rotheir use is based, implicitly, on the assumption, or better the
bustness of the relevant processes. This means that changkspe, that their dynamical properties can reproduce those of
at least within suitable ranges, of the external conditions, othe real system, at least the more important. We think that
of the dynamics of the triggering events, or even of the pathis point is strongly connected with the problem of the ro-
rameters of the effective potentials, must not result in esserbustness, previously mentioned with respect to changes
tial changes of the main features of the process under comwithin the framework of the adopted model. In fact, as long
sideration. The topological index of kinks cannot beas one believes to have captured the essential properties of

IV. DISCUSSION AND CONCLUSIONS
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the dynamics, one has also to be sure that an enrichment ocfPPENDIX B: EQUILIBRIUM CONFIGURATIONS WITH
the models, necessary to get closer to more complete descrip- A BUBBLE

tions, does not alter these properties. This is not a minor

point: if the complexity of the structure of a dynamical

model increases, it probably becomes more difficult to find a

relatively ordered process as a travelling localized excitation

We think that this is one of the problems that deserve the

efforts to be spent in future works.
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APPENDIX A: EQUILIBRIUM CONFIGURATIONS IN
HETEROGENEOUS CHAINS

To solve in general Eqg5) we start by posing

I-nJrl,n_ L

Orn+1rnsinm9n=s (B1)

Ln+1,n

In principle from (B1) one can haveA 0,=f(r,.+1,rn,S).
Substituting this function, foA 6, andA6,,_,, in (58, one
can obtain an equatia(r,. 1, . n—1,S) =0. Choosing the
values of two contiguous siteg, andr ., ;, the equilibrium
configuration can be computed site by site. But, without any
hint on the choice of the initial values fof, andr,,, 4, it is

not possible to predict the structure along the chain of the
configuration that will be found. It would be the analogous of

computing a static solution of Eq1) with “initial condi-

Let us suppose that we have found an equilibrium contions” on ¢ chosen at random: the solutiap(x) will be
figuration for a homogeneous chain with &l,’s equal to  oscillatory or will (unphysically diverge forx— +o or x
Da_t. We now want to find the configuration for a chain in — —; the localized solution such that(x) — ¢.. for x—
which some of theD,'s are instead equal tDs_c. We can  *=, where¢, and ¢ _ are two degenerate minima fa,
use the following procedure. We have to solve Efs.for  requires exactly given “initial conditions.” We will show
the given sequence of tHg,’s. We rewrite the equations in the way in which this problem can be solved and therefore
implicit form as how we can find a solution of Eq$5) constituting a nonto-
pological localized excitation.

ﬂzo (Ala) As we said in Sec. Il A, posingnﬂyn:f(constam im)
ar, we find, from Egs.(5), an homogeneous equilibrium con-
figuration withr,=r andA 6,=A ¢ for givenr andA ¢; we
ﬂzo_ (Alb) consider here the case<L,, that givesr>R, and A6
a6, <0,. Substituting in(B1) r,,1=r,=r andA6,=A80, to-

gether withL ., ,=L, we find the corresponding value af
With this value ofs we now want to find a configuration
such thatr,—r and A6,— A6 for n— *o, with an open
region in the middle. Then, fon— o we write r,=r
+6r, and Ad,=A 6+ 56, we substitute in(B1) and we

Suppose to know the solution @A1) for a certain sequence
of the D,/’s. If we now haveD,—D,+ éD,, then we can
find, at the first order, the new solution by solving the linear
system of equations:

52U 52U expand in power series afr,,, or,.1, and 86,, keeping
SDp+ >, OXm=0, (A2a)  only the first order terms. Therefore we have a linear equa-
IrndDp m IFndXm tion from which we obtain
#*U 80,=y(Srn+ 1), B2
> Mm=0, n=1,...N,  (A2b) 0= H o+ Ornes) (82
m 00,9X

where the coefficieny, that we do not write explicitly here,
wherex, is the generic variable appearing ih and in the depends om, Ag, and the_ parameters _of the model. At this
sums inmthe only terms that will appear are those belongingPint We expand Eq(Sa) in power series ofor,,, ory. 1,

to the same site or to the neighboring sites. In the lineaP n-1, 60n and 66,_1, we keep only the first order ter_ms
system(A2) the derivatives are to be computed in the old@nd we substituté6, and 56, from (B2). Then we obtain
equilibrium configuration, and it has to be solved with re- ®n+1 @s a function ofér,, and ér,_;, in the form

spect to thedx,,. Although this will give the new configu- (B3)
ration only at first order, it is nevertheless possible to refine

the solution up to the desired degree of accuracy with iteraAgain the coefficienty depends on, A4, and the param-

tive steps. If the values afU/or, anddU/6,, after soving  eters of the model. What is of interest here, for what will be
the system, are not yet equal to 0 within the chosen tolers;iq in a moment. is that. wharn> R, and A< Oy, it is
ance, then one can solve a system in which the terms Witﬁlwaysn>2. If we now pose

6D, in (A2) [actually absent ifA2b)] are substituted by

O 1= 7morn— 0.

those values. With a suitable choice for the variatiin, it S
is then possible, repeating a sufficient number of times the o= s (B4)
procedure, to start from the solution G&2) for D,=D_7 n-1

for eachn and find the solution in which any subset of the

D,’s has becom®_¢. then from(B3), we can derive the matrix equation
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7 —1 of r, for somen,, and forn>ny, r, will decrease; only in
Opy1= 1 0 ) oy (BS)  the cases wheme, ;=r, ;1 0rr, =r, ;1 agood localized
solution, withr,—r for n— +o, will be obtained. In the
The eigenvalues of the matrix {i85) are given by first case we have an odd bubble, and in the second an even
. bubble. To fall in one of these two cases, it is sufficient to
Ne=3[nEVn—4] (B6)  perform some attempts at adjusting the modulus of the initial
The eigenvalues are both real and positive since2, and vector&no.

A_=1/\,, the matrix determinant being 1. Then,>1 In this way, we have found that in a somewhat uncoiled
and\_<1. We are therefore assured that, if for a given ~ chain (A 6,<®,) there is an equilibrium configuration with
we takeﬁrno as the eigenvector correspondinght@, then r,—r>Rgy andA#,—AH<O, for n— *oo, where inr the

for n<ng, or, will tend exponentially to 0. Therefore, the hydrogen bond represented by the Morse potential is only
strategy is to take suchd, , obviously of very small modu- Slightly stretched, and in the middlg is such that the hy-
lus to make the linear approximation (B1) and (53 valid, ~ drogen bond is completely brokesee Fig. 1. ,

and then to computd ¢, andr , for n>n, site by site from As already explained, the qualitative picture is not
the complete equatiofs). One will reach a maximum value changed in heterogeneous chains.

[1] G. Gaeta, C. Reiss, M. Peyrard, and T. Dauxois, Riv. Nuovg[18] Y. Z. Chen and E. W. Prohofsky, Eur. Biophys. 25, 9

Cimentol17, 1 (1994. (1996.

[2] L. V. YakushevichNonlinear Physics of DNAWiley, Chich-  [19] T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. ReWE

ester, UK, 1998 R44(1993.

[3] R. Boesch and M. Peyrard, Phys. Rev4B 8491(1991). [20] D. Cule and T. Hwa, Phys. Rev. Left9, 2375(1997.

[4] R. S. MacKay and S. Aubry, Nonlineari®; 1623(1994). [21] Y. Zhang, W.-M. Zheng, J.-X. Liu, and Y. Z. Chen, Phys. Rev.

[5] S. Aubry, Physica DL03 201 (1997). E 56, 7100(1997).

[6] S. Flach and C. R. Willis, Phys. Rep95, 181 (1998. [22] A. Campa and A. Giansanti, Phys. Rev5E 3585(1998.

[7] R. Boesch, C. R. Willis, and M. El-Batanouny, Phys. Rev. B[23] A. Campa and A. Giansanti, J. Biol. Phy&}, 141 (1999.

40, 2284(1989. [24] M. Remoissenet, Phys. Rev. 38, 2386(1986.

[8] S. Aubry and T. Cretegny, Physica T19, 34 (1998. [25] S. Cocco and R. Monasson, Phys. Rev. L&8.5178(1999.

[9] S. Flach and C. R. Willis, Phys. Rev. Le®2, 1777(1994. [26] Of course, with sufficiently long chains, the spectrum of
[10] Y. S. Kivshar, Phys. Lett. A61, 80 (1991). phononic perturbations will include arbitrarily small eigenfre-
[11] G. Kalosakas, A. V. Zolotaryuk, G. P. Tsironis, and E. N. guencies(associated essentially thé oscillationg; however,

Economou, Phys. Rev. &6, 1088(1997. this should not modify the substance of our results: the number
[12] M. Salerno, Phys. Rev. A4, 5292(1991). and the characteristics of the eigenvectors associated to pertur-
[13] S. A. Gredeskul and Y. S. Kivshar, Phys. Reas, 1 (1992. bations of the bubble should not change.
[14] M. Barbi, S. Cocco, and M. Peyrard, Phys. Lett.2B3 358  [27] L. Casetti, Phys. Sc51, 29 (1995.

(1999. [28] R. RajaramangSolitons and InstantonéNorth-Holland, Am-
[15] M. Peyrard and A. R. Bishop, Phys. Rev. Le®2, 2755 sterdam, 198R

(1989. [29] T. Dauxois, M. Peyrard, and C. R. Willis, Phys. Rev.4B
[16] D. Poland and H. R. Scherageheory of Helix-Coil Transition 4768(1993.

in Biopolymers(Academic, New York, 1970 [30] T. Dauxois and M. Peyrard, Phys. Rev. L&t0, 3935(1993.

[17] R. M. Wartell and A. S. Benight, Phys. Rep26, 67 (1985. [31] O. Bang and M. Peyrard, Phys. Rev5B, 4143(1996.

021901-10



