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Bubble propagation in a helicoidal molecular chain

Alessandro Campa*
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We study the propagation of very large amplitude localized excitations in a model of DNA that takes
explicitly into account the helicoidal structure. These excitations represent the ‘‘transcription bubble,’’ where
the hydrogen bonds between complementary bases are disrupted, allowing access to the genetic code. We
propose these kinds of excitations in alternative to kinks and breathers. The model has been introduced by
Barbi et al. @Phys. Lett. A253, 358 ~1999!#, and up to now it has been used to study on the one hand low
amplitude breather solutions, and on the other hand the DNA melting transition. We extend the model to
include the case of heterogeneous chains, in order to get closer to a description of real DNA; in fact, the Morse
potential representing the interaction between complementary bases has two possible depths, one forA–T and
one forG–C base pairs. We first compute the equilibrium configurations of a chain with a degree of uncoiling,
and we find that a static bubble is among them; then we show, by molecular dynamics simulations, that these
bubbles, once generated, can move along the chain. We find that also in the most unfavorable case, that of a
heterogeneous DNA in the presence of thermal noise, the excitation can travel for well more than 1000 base
pairs.
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I. INTRODUCTION

In the attempt to describe some aspects of DNA functi
ing, the theory of nonlinear dynamical systems has found
interesting application to this important biological structu
In spite of the awareness of the complexity that character
most of the dynamical processes taking place in biolog
systems, where very often the necessary trigger is constit
by the temporary interaction of different objects, there
nevertheless an effort, in the research in biological phys
to grasp some essential features with simple models.

In this work we are interested in the propagation of ve
large amplitude bubbles, that should be very important in
description of the process of transcription. In this respect,
main appeal of one-dimensional nonlinear models is th
possibility to sustain localized excitations, of which o
bubbles are an example. In this direction there have b
works based on some models where the essential degre
freedom of each site of the chain is related to the openin
the hydrogen bonds between the complementary bases o
double stranded DNA~for a review see, e.g., Refs.@1,2# and
references therein!.

The important points to address for any given model
the existence and the stability of localized excitations, b
stationary and moving; after that the problem of their form
tion has to be considered. In this section we give a very b
account of the situation in models with one degree of fr
dom per base pair, limiting ourselves to the problems
existence and stability.

Let us begin with homogeneous chains. We can start m
ing a distinction between models that do not neglect the
creteness of the system, and models that are treated in
continuum limit, either from the start or after the approxim
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tion of the original discrete equations. In both cases ther
usually a nearest neighbor interaction and a site potentia
the continuum limit generally the field equation under stu
is of the Klein–Gordon type:

]2f

]t2
5v0

2 ]2f

]x2
2

]U

]f
. ~1!

Consider the problem of the existence of localized station
solutions. We know that for equations like~1! localized so-
lutions, where at both sides of the excitation the fieldf is at
the minimum ofU, are possible only ifU has degenerate
minima; thenf has a kink configuration and we have
topological soliton, which implies a displacement of a who
side of the chain. One of the most used examples of~1! is the
sine-Gordon equation. The stationary solutions really
static, i.e., they are equilibrium configurations, that are o
tained by solving the Newton-type equationv0

2(]2f/]x2)
5]U/]f, and localized solutions, the kinks, are found
choosing appropriate ‘‘initial conditions’’ in this equation.
the original model equations were discrete, the equilibri
configurations are such that their envelope has a kink st
ture which is very close to that of the continuum equatio
with the center exactly on one site~odd kink!, or in the
middle between two sites~even kinks! ~see Ref.@3#, where
also the problem of the stability is considered!.

In models where the discreteness is taken into acco
the problem of solutions with a topological index can
circumvented; in fact, also with site potentialsU with a non-
degenerate absolute minimum, it is possible to have stat
ary localized excitations, in the form of breathers, in whi
only few sites are coherently involved with a non-negligib
amplitude in a nonlinear oscillation with a given fundame
tal frequency~for the mathematics of breathers in discre
nonlinear lattices and the conditions for their existence a
©2001 The American Physical Society01-1
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stability see Refs.@4–6#!. Now there is an additional degre
of freedom in the choice of the localized solution, namely
variation, in proper ranges, of the fundamental frequency
analogy with the situation that arises with kinks, a breat
with a given fundamental frequency can be centered on
site, which has the largest amplitude of oscillation~odd
breather!, or on two sites, which have the largest identic
amplitudes~even breather!.

We now turn our attention to the stability of these so
tions. The stability of a static kink configuration, in lattic
models approximated by~1!, requires the positive definite
ness of the Hessian matrix of the total potential energy.
stead for a breather the stability is checked through the
earization of the equations of motion around the station
solution; the transformation of the perturbation in o
breather period gives a linear application, whose spect
determines the stability properties~Floquet analysis!: the
breather is stable if there are no eigenvalues with modu
greater than 1@5#.

The important point to study is that of the moving cap
bilities of localized excitations. If we are interested in mo
ing solutions of Eq.~1!, the problem is easily solved. An
static solution, in particular a localized one, can be tra
formed to a moving one, with speedv,v0, through a Lor-
entz boost~with ‘‘speed of light’’ v0); its profile will only be
modified by the Lorentz contraction. If the original model
discrete and Eq.~1! is only its approximation, then the move
ment of the localized excitation will be associated to an
ergy loss through phonon radiation but generally the k
retains a good stability. In Ref.@7# one can find the treatmen
of this phonon dressing of the moving kink.

The study of moving breathers is more difficult. While th
existence of stationary breathers seems to be quite inde
dent of the characteristics of the site potential, at least
sufficiently small coupling between different sites@5#, the
presence of exact moving breathers is associated to s
special integrable Hamiltonians~see Ref.@6# for a review!.
In the other, generic cases, the common approach is to s
the stability spectrum of stationary breathers, making a c
nection between some of the elements of the spectrum
the ‘‘sensitivity’’ to movement@8,9#. The absence of a zerot
order moving solution, analogous to the boosted kink of
~1!, makes the treatment of stability of moving breathers l
approachable.

If we consider heterogeneous chains, there are of co
more problems, especially regarding the stability of mov
excitations, in particular breathers. The amount of work
been less extensive. There have been studies on nonl
localization in chains with impurities@10#, on kink propaga-
tion through regions with mass variation@11#, MD simula-
tions in a sine-Gordon model of DNA@12#; see Ref.@13# for
a review of results on disordered systems in the continu
limit.

Let us summarize what the main problems with kinks a
breathers are if we want to consider them as good candid
for the local openings needed during the transcriptions.
we have seen, the stability is a less severe difficulty
kinks. For this reason they could be preferable. On the c
trary, the breathers have the advantage to avoid the prob
02190
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of the topological index. However, it is plausible that, if w
want to describe with a breather a region where the b
between the complementary bases is temporarily broken
allow access to the genetic code, this breather must be w
~i.e., the number of sites essentially involved in the motion
not very small! and of very large amplitude; unfortunately
the probability that a breather is stable greatly decrea
when its width increases and when its amplitude is large@5#
~this second point can be easily guessed, since for poten
that allow dissociation, large amplitude means low fund
mental frequency, and therefore a strong probability of re
nance with the phonon dispersion curve!.

In this work it is our purpose to show that, with a give
model with two degrees of freedom per base pair, it is p
sible to put together some of the advantages of kinks
breathers, i.e., respectively, a good stability with respec
movement, and a local excitation that does not need a to
logical index. We will show that these large amplitude so
tions of the model have a satisfying stability also with h
erogeneity and with thermal noise. We think that the
properties can represent those of a ‘‘transcription bubble

The model has been proposed by Barbiet al. @14#, and it
is an evolution, that takes the helicoidal structure explici
into account, of the Peyrard–Bishop~PB! model. This last
model was introduced@15# to have a dynamical explanatio
of the melting transition, opposed to methods that offer o
equilibrium estimates of the probability of bond disruptio
@16–18#. A satisfactory melting curve was obtained@19#, and
later the melting of heterogeneous chains and of hetero
neous oligonucleotides has been studied@20–23#. The heli-
coidal model introduced in Ref.@14# was there used to build
approximate low amplitude solutions through the method
the multiscale expansion@24#, and in Ref.@25# the melting
transition was investigated.

In Sec. II we introduce the model and we compute
equilibrium configurations, with their stability properties.
Sec. III we show the results of our MD simulations, togeth
with an approximate computation of the features of the m
ing bubbles. In Sec. IV we present our discussion and d
some conclusions.

II. MODEL

Our starting point is the model introduced~in a somewhat
different version! in Ref. @14#. The bases can move only i
planes perpendicular to the helix axis; besides, the cente
mass of the base pair is held fixed, and the two complem
tary bases move symmetrically with respect to the axis of
molecule. Then for each base pair there are two degree
freedom:r n is the distance between each one of the comp
mentary bases in thenth base pair and the helix axis;un is
the angle that the line joining the two complementary ba
makes with a given direction in the planes where the ba
move. The potential energy is given by

U5(
n

$Dn~e2a(r n2R0)21!21 1
2 c~r n112r n!2

1 1
2 K@Ln11,n2L0#2%, ~2!
1-2
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whereLn11,n is the distance between neighbor bases on
same strand, and as a function ofr n , r n11 and un112un
[Dun is given by

Ln11,n5Ah21r n11
2 1r n

222r n11r n cosDun, ~3!

whereh53.4 Å is the fixed distance between neighbor ba
planes andR0510 Å is the equilibrium value ofr n ; L0 is
the same function computed forr n115r n5R0 and Dun
5Q05p/5 (10 base pairs per helix turn!. Therefore the
equilibrium configuration is that withr n5R0 andDun5Q0
for eachn, which gives the system its helicoidal structur
The natural helicity is right handed, and for convenience
take this as the positive rotation for the anglesun . Actually,
equilibrium configurations are also all those in which a
Dun is chosen indifferently6Q0; however, they are sepa
rated by the fundamental one by potential barriers, that in
simulations are never crossed. The first two terms in~2! are
the same of the original PB model@15#, which hasr n as the
only degree of freedom per base pair: there is a Morse
tential with R0 as the equilibrium distance, and a harmon
interaction between neighbor base pairs~stacking interac-
tion!; there can be two different values forDn , DA–T for
A–T base pairs andDG–C for G–C base pairs. It is generally
assumed thatDG–C5 3

2 DA–T . The last term in~2! describes a
restoring force that acts when the distanceL between neigh-
bor bases on the same strand is different fromL0. The model
has been introduced in Ref.@14# without the second term in
~2!, essentially attributing all the stacking interaction to t
last term, and with an additional three-body term prop
tional to (un111un2122un)2, to eliminate the equilibrium
configurations with someDun52Q0. In this form the au-
thors have studied small amplitude breatherlike solutio
with the envelope described by the nonlinear Schro¨dinger
equation. In Ref.@25# the statistical mechanics of model~2!
has been studied, the authors being interested in the me
transition of DNA; in this case the difference from~2! was
given by a replacement of the coupling constantc by a cou-
pling of the formce2b(r n111r n22R0), decreasing withr n11
1r n increasing. Besides, the restoring force represented
the last term was cast in another form, withL fixed ([L0)
and h variable. In both works a homogeneous DNA (Dn
constant inn) was considered. We use the more compl
structure used in Ref.@25#, with the second term in~2! more
related to the stacking interaction, and the last term m
related to the rigidity of the two single strands, withL vari-
able andh fixed. For simplicity, we do not insert a decayin
coupling: this last feature has been found, already in
original PB model@19#, as being essentially responsible f
sharpening the melting transition, which happens at hig
temperatures than those we are interested in here. Also
three-body term used in Ref.@14# was not necessary, since
our simulations, as we have already pointed out, we ne
had a crossover in the sign ofDun .

The spirit in which we study the model represented by~2!
is the following. We consider a chain of a given length, w
fixed boundary conditions. We know that an interaction w
an enzymatic complex~with RNA polymerase! is necessary
to trigger the process of transcription. We take here, a
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working hypothesis, that this external action can be rep
sented by a partial unwinding of one of the extremes of
chain, considered as the interaction site. We will show t
this mechanism can give rise to a travelling bubble~the
‘‘transcription bubble’’!, in which several base pairs ar
open; this bubble, that appears to be very stable in a ho
geneous chain initially at rest, is interestingly long lived al
in the case of a heterogeneous chain and with thermal di
der.

In the remaining part of this section our aim is to give
analytical background to the results, obtained by molecu
dynamics simulations, that will be presented in the next s
tion. Since the essential dynamical process that we will
serve is a local opening travelling along the chain, we w
to show that this movement can be considered, in an a
batic approximation, as a succession of equilibrium confi
rations, similarly to what happens with the travelling
kinks. Consequently, in Sec. II A we will study the equilib
rium configurations of our system: we will show how a cha
with some uncoiling, caused by suitable boundary conditio
@i.e., if u0 and uN11 are held fixed at values such th
uN112u0[(n50

N Dun,(N11)Q0#, can have different equi-
librium configurations. The simplest one, for a homogene
chain, is given by a homogeneous configurationr n5r and
Dun5Du for eachn, for certain values ofr and Du; for a
heterogeneous chain, whereDn5DA–T for somen and Dn
5DG–C for the other values ofn, the configuration is not
qualitatively very different from the previous, although th
precise equilibrium values ofr n andDun depend on the se
quence. Another equilibrium configuration in the homog
neous case, the one in which we are interested, is on
which a small region~about 20 base pairs! is completely
open, and at both sidesr n andDun decay rapidly to homo-
geneous values. Again, in the heterogeneous case, the de
dence on the sequence does not alter qualitatively the
ture. In Sec. II B we will briefly treat the stability of thes
equilibrium configurations.

A. Equilibrium configurations

If we neglect the mass variation betweenA–T andG–C
base pairs, and take a proper unit of mass, the equation
motion deriving from~2! are

r̈ n2r nu̇n
252

]U

]r n
,

~4!

r n
2ün12r nṙ nu̇n52

]U

]un
.

The equilibrium configurations are those that make the rig
hand sides vanish. Therefore we have to solve

2aDn~e22a(r n2R0)2e2a(r n2R0)!1cD2r n

1KH Ln11,n2L0

Ln11,n
@r n11 cosDun2r n#

1
Ln,n212L0

Ln,n21
@r n21 cosDun212r n#J 50, ~5a!
1-3
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ALESSANDRO CAMPA PHYSICAL REVIEW E63 021901
Ln11,n2L0

Ln11,n
r n11r n sinDun2

Ln,n212L0

Ln,n21
r n21r n sinDun21

50 ~5b!

for n51, . . . ,N; here D2r n[r n111r n2122r n . From the
structure of Eq.~5b! it is clear that any solution of~5! has to
be such that the quantity represented by, say, the first ter
~5b! is a constant as a function ofn. Let us begin considering
a homogeneous chain. Then of course the simplest solu
is to have bothr n and Dun constant inn. In this case also
Ln11,n is constant inn. Therefore, posingr n5r and Dun

5Du, and equatingLn11,n to a constantL̄, one can express
Du as a function ofr and L̄; then, substituting in~5a! this
function, together withLn11,n5L̄ and r n5r , one can find
~numerically! the equilibrium valuer ~which will depend on
L̄). Going back also the equilibrium valueDu can be com-
puted. If the chain is not infinite and there are fixed bound
conditions ~for n50 and n5N11), then, for the equilib-
rium it is required that alsor 05r N115r and Du05DuN
5Du. It is clear that the fundamental equilibrium configur
tion (r 5R0 and Du5Q0) is obtained forL̄5L0. For L̄

,L0 we haver .R0 and Du,Q0 ~uncoiling!, while for L̄
.L0 we haver ,R0 and Du.Q0 ~overcoiling!. When the
chain is heterogeneous, the corresponding equilibrium s
tion can be found from the homogeneous one with an ite
tive procedure explained in Appendix A. The solution w
depend on the sequence of theDn’s; however, it will not be
qualitatively very different from the homogeneous case. T
interesting equilibrium configuration is of course that
which we have an open region. In this case, although the
term in ~5b! is constant inn ~and equal, say, tos), Ln11,n is
not itself a constant. We have developed a procedure to c
pute these configurations. Here we only give a sketch; m
details can be found in Appendix B. In principle, from

~Ln11,n2L0!r n11r n sinDun5sLn11,n ~6!

it is possible to obtainDun as a function ofr n11 , r n , ands;
substituting in~5a!, we can therefore obtainr n11 as a func-
tion of r n , r n21, ands; in this way, starting from the value
for two contiguousr n , we can compute site by site the equ
librium configuration. With a proper choice of the value ofs,
we obtain a solution in which there is a region, of about
base pairs, wherer n.R0 in such a way to stay in the platea
of the Morse potential; in that region the uncoiling (Dun
,Q0) is marked. At both sides of the open region ther n’s
decay very rapidly to a value slightly larger thanR0 and the
Dun’s to a value slightly smaller thanQ0. As before, after
the computation has been performed for a homogene
chain, with the procedure explained in Appendix A we c
obtain also the configuration for a heterogeneous chain.
two cases do not differ qualitatively. In Fig. 1 we show tw
examples of equilibrium configurations: one for a homog
neous chain and another for a heterogeneous chain, in w
the sequence ofA–T andG–C has been chosen randoml
we present only the graphs concerning the radial degree
freedomr n .
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In the homogeneous case, the configuration is symme
at both sides of the bubble. Besides the obvious translatio
invariance~for the infinite chain!, it is possible to have a
configuration centered on one site with the largest open
as in Fig. 1, or on two sites with equal and largest openi
~the analogous of what happens also for the discrete k
and breathers!. For brevity, in the following the bubble cen
tered on one site will be denoted odd bubble, and that c
tered on two sites even bubble. In the heterogeneous c
translational invariance is lost, but it is not difficult to gues
in view of the method described in Appendix A, that a
equilibrium configuration occurs for any site or couple
neighbor sites chosen as the center of the bubble~obviously
now not symmetric!.

B. Stability

In order for an equilibrium configuration to be stable, t
Hessian matrix of the potentialU must be positive definite a
that point of configuration space. In that case, the squ
roots of twice the eigenvalues of the matrix give the prop
frequencies of the small oscillations around the equilibriu
We will consider here, as an example, the results fors5
20.273@see Eq.~6!#, for the cases of the odd and the ev
bubble. However, before treating our particular example,
want to note the following fact concerning the stability
these kinds of configurations. We have found that, depend
on the choice of the constants and on the values of the
model parameters, both stable and unstable cases occur

FIG. 1. Equilibrium configurations for a homogeneous cha
with Dn5DA–T for eachn ~a!, and for a heterogeneous chain wi
a random choice ofDn ~b!. We show only the central region, tha
with the bubble. In this figure and in Figs. 3–7 the unit of leng
is Å .
1-4



v
d
or
n
a

gh
o

c-
be

te
ro

w

ul
x
in
is
d
he
s;
ho
on
g
e

re

is
in
i

th
e
od
lu

to

er-
ith

ave
rse

g

s

ef.
ed
in.
Let
pen
he
is

y
es

are
the
rds

ase
t

er-
n-

six
av-
at,
An-
er

he

ars

ia
lin

-

-
ve
en

he
t to
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often if the odd bubble is stable, then the even bubble
unstable, and vice versa. Then one of the smallest eigen
ues of the Hessian matrix in the stable case is associate
the movement of the bubble along the chain. To be m
precise, if the bubble is pushed out of the equilibrium co
figuration by exciting the eigenvector associated to this sm
eigenvalue, then, if the excitation amplitude is high enou
the motion will go beyond the linear regime and, instead
performing an oscillation, the bubble will move in one dire
tion. During this movement along the chain there will
instants~in the adiabatic approximation! in which the bubble
traverses in turn the equilibrium configurations constitu
by the odd and the even bubbles. We have here a st
similarity with the situation that arises with kinks@7#, and an
analogy with the breather sensitivity to movement that
mentioned in the Introduction.

We now turn to our example withs520.273 and with
the same parameter values that we employ for the sim
tions ~we will give these values at the beginning of the ne
section!. We have performed our calculations on a cha
with 100 base pairs, with the bubble in the middle; th
should be sufficient to avoid boundary effects. For the o
bubble the Hessian matrix is positive definite. Most of t
proper frequencies are associated to phononic excitation
fact, the corresponding eigenvectors are spread throug
the all chain. But a small number of eigenvalues corresp
to eigenvectors that have components which are not ne
gible only on the sites of the open region. Therefore, th
represent perturbations of the bubble. Among these, the
the smallest eigenfrequency@26#. In Fig. 2 we show the ei-
genvector corresponding to the smallest eigenvalue. Th
clearly associated to the movement of the bubble, accord
to what we pointed out in the previous paragraph. This
proved by the fact that in the spectrum of the even bubble
eigenvalues are all positive except one. The positive eig
values are very similar to the corresponding ones of the
bubbles, while the negative one is very close, in abso
value, to the smallest of the odd bubble. The smallness
this value shows that the open region is very ‘‘sensitive’’
movement@8#.

FIG. 2. Eigenvector of the smallest eigenvalue of the Hess
matrix of a homogeneous chain with 100 base pairs. The full
corresponds to the radial displacementr, while the dashed line to
the transversal displacementR0u. In the vertical axis we have arbi
trary units.
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III. RESULTS

In this section we show the results of the simulations p
formed. We have simulated a chain of 2500 base pairs, w
fixed boundary conditions. The parameters of the model h
been given the following values: the depths of the Mo
potential areDA–T50.05 eV and DG–C50.075 eV; the
width is a54 Å 21; the constant of the harmonic stackin
interaction isc50.05 eV/Å2, while that of the restoring
force isK50.14 eV/Å2; we have already given the value
of h53.4 Å , R0510 Å , andQ05p/5. We have used the
second order bilateral simplectic algorithm described in R
@27#. As anticipated before, the travelling bubble is form
by imposing a partial unwinding at one end of the cha
After that, the open region travels towards the other end.
us give some more details on the process by which the o
region is formed. We have fixed boundary conditions. At t
left end of the chain we begin to make an unwinding. This
done by decreasing the angleDu05u12u0 between the
‘‘fixed’’ site at the left of the chain and the first site, i.e., b
increasingu0. This causes an opening of the first few sit
because of the last term in the potential energy~2!. During
the process of formation of the open region, also phonons
created, which begin to travel faster than the bubble. At
end of the process we observe the bubble travelling towa
the right. We have used different amplitudes for the incre
of u0, that will be specified in the following for the differen
cases.

We begin by showing the results of the simulation p
formed for a homogeneous chain initially at rest in the fu
damental equilibrium configuration. We have increasedu0
by 1.25 radians. In Fig. 3 we present the configurations at
different times. It can be noted from the graphs that the tr
elling bubble is practically stable. We have even found th
when it reaches the end of the chain, it bounces back.
other thing to be noted, and that is valid also in the oth
situations that we will show, is that outside the bubble t
radial coordinater n is practically in the equilibrium position
R0, and correspondingly there is no uncoiling. This appe

n
e

FIG. 3. Successive configurations in a homogeneous chain~all
Dn’s equal toDA–T) of 2500 base pairs initially at rest in the fun
damental equilibrium configuration. In the vertical axis we ha
Dr[r 2R0. The bubble travels towards the right. It has be
formed by an unwinding given by an increase of 1.25 radians inu0.
In order to show all the configurations in a single graph, in t
vertical position of each one there is an offset of 1 with respec
the previous.
1-5
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ALESSANDRO CAMPA PHYSICAL REVIEW E63 021901
to be in contrast with the results of the preceding secti
concerning the structure of the equilibrium configuratio
We remind that we found a degree of uncoiling, and a va
of r n somewhat larger thanR0, at the sides of the bubble. A
the end of this section we will try to give an argument
show the reason why the sides of a travelling bubble can
in the equilibrium configuration. This fact is probably a go
point, in view of a possible biological significance of th
dynamical processes of this model, and we will comment
that in the last section.

In Fig. 4 we show the situation that arises in a hetero
neous chain, again initially at rest in the fundamental st
The sequence of base pairs has been chosen at random
can note that the bubble progressively decreases its am
tude, contrary to what happens in the homogeneous case
in fact in the last configuration practically we do not see
any more. However, before disappearing the excitation
travelled well beyond 1000 base pairs. Here we have
creasedu0 by a greater quantity than before, namely by
radians. It is not difficult to understand the reason of
different behavior between homogeneous and heterogen
chains. In the first case the spectrum of the Hessian matr
the equilibrium positions for givens @see Eq.~6!# is the same
for all odd bubbles and the same for all even bubbles, in
pendent of the location~at least for infinite chains, but fo
finite chains this is true to a high degree of accuracy, un
the bubble is very close to one end of the chain!. Therefore,
in the adiabatic approximation, the dynamical situation o
bubble repeats periodically every site that has been trave
In a heterogeneous chain the Hessian matrix is, in gen
different at any location, thus the above argument does
apply, and a faster energy loss takes place. Nevertheles
lifetime of the bubble is still satisfying. It is possible to a
gue, in a qualitative way, that heterogeneity acts on
bubble only through the few sites belonging to its two en
since the other sites of the bubble are in the plateau regio
the Morse potential, where there are no differences betw
the two types of base pairs. With the exposition of the res
obtained for chains at room temperatures, we will tou
again this point.

We have made simulations in which we have produc
with the same procedure as before, a localized excitation;
now the chain is initially in thermal equilibrium at 300 K
Again, we have studied both a homogeneous and a he

FIG. 4. Same as Fig. 3, but for a heterogeneous chain, w
random choice of theDn’s, and whereu0 has been initially in-
creased by 2 radians.
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geneous chain. For the second case, we have used the
base pair sequence that has been adopted for the simul
of the system initially at rest. Let us first consider the hom
geneous chain. We have made a simulation in which we h
increasedu0 by the same quantity, 2 radians, used in t
heterogeneous chain at zero temperature. In this way
could make a comparison, under the same initial excitat
process, between the robustness of the bubble against he
geneity and against this level of thermal noise. Figure
shows the configurations again at six successive times. F
the inspection of Figs. 4 and 5 we can note the followi
points. The amplitude of the bubble is greater in the hete
geneous chain initially at rest; nevertheless the distance t
elled is somewhat greater in the homogeneous chain at
K. Therefore it seems that the interaction with the phon
bath at this temperature is less effective, in taking ene
away from the bubble, than the modes of the~disordered!
heterogeneous chain. Of course, it is possible to increase
lifetime of a bubble by increasing the strength of the init
excitation. In Fig. 6 the configurations obtained for the h
mogeneous thermalized chain whenu0 is initially increased
by 2.8 radians. We can see that the bubble has still a la
amplitude when it has almost reached the end of the chain
in the case of the zero temperature, we have found tha
bounces back.

The last case that we present is that of the heterogen
chain at 300 K, in Fig. 7; the initial increase inu0 is 2.8
radians. We see that, in spite of the two possible source
disturbances to the localized excitation, heterogeneity

th FIG. 5. Same as Fig. 3, but for a chain in thermal equilibrium
300 K, and whereu0 has been initially increased by 2 radians.

FIG. 6. Same as Fig. 5, but withu0 initially increased by 2.8
radians.
1-6
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thermal noise, the bubble still travels for about 1300 b
pairs.

A. Moving open regions

In order to show how the bubbles move along the cha
we employ here a simplified version of the model. We ma
this choice since in this way we can have manageable
pressions. However, we believe that the same kind of me
nisms happen in the complete system, the difference b
that the expressions would be much more involved, requir
the inversion of trigonometric functions.

The fundamental equilibrium configuration is that wi
r n5R0 andun5nQ0; we here expandLn11,n @see Eq.~3!# in
power series and keep only the first order terms inr n
2R0), (r n112R0), and (un2nQ0). Such a procedure is no
entirely consistent, since we do not make an analogous
pansion in the Morse potential. However, we have chec
numerically that the linear approximation forLn11,n is not
bad in a quite large range of variability ofr n , r n11 andDun ,
and more importantly this simplification is done only f
illustrative purposes. Callingyn[r n2R0 and zn[R0(un
2nQ0), and neglecting the kinetic terms, the equations
motion of this simplified system in the homogeneous c
are

ÿn52aD~e22ayn2e2ayn!1c~yn111yn2122yn!

2A2~yn111yn2112yn!2AB~zn112zn21!, ~7a!

z̈n5B2~zn111zn2122zn!1AB~yn112yn21!, ~7b!

where the positive coefficientsA and B, coming from the
power expansion of Ln11,n , are given by A
52AK(R0 /L0)sin2(Q0/2) andB5AK(R0 /L0)sinQ0. Going
to the continuum limit, we posen→x, y→f, and z→c.
Taking into account partial spatial derivatives up to a su
able degree, and denoting withUM the Morse potential, we
obtain the following equations

]2f

]t2
52

]UM

]f
24A2f2A2

]2f

]x2
1c

]2f

]x2
22AB

]c

]x

2
1

3
AB

]3c

]x3
, ~8a!

FIG. 7. Successive configurations in the same heterogen
chain of Fig. 4, but in thermal equilibrium at 300 K and withu0

initially increased by 2.8 radians.
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]2c

]t2
5B2

]2c

]x2
1

1

12
B2

]4c

]x4
12AB

]f

]x
1

1

3
AB

]3f

]x3
.

~8b!

We now pose (]2f/]t2)5v2(]2f/]x2) and (]2c/]t2)
5v2(]2c/]x2), and in the following we consider the expre
sions that are found keeping only the first order terms inv2.
From Eq.~8b! it is possible to obtain an expression for th
spatial derivatives ofc as a function off; the one that is of
interest to us is

]c

]x
5dS 11

v2

B2D 22
A

B S 11
v2

B2D f2
A

6B

]2f

]x2
~9!

with the arbitrary constantd. Substituting in~8a! for ]c/]x
and]3c/]x3 we find an equation forf:

c8
]2f

]x2
52

]

]f F2UM~f!1gS 11
v2

B2D f12
A2

B2
v2f2G ,

~10!

where c85c2v2@12(2A2/3B2)# and g522dAB. Let us
begin considering the static case,v250. Then, Eq.~10! re-
duces to

c
]2f

]x2
52

]

]f
@2UM~f!1gf#[2

]

]f
V~f!. ~11!

We see that with a positiveg ~i.e., with d,0) we have the
possibility of a localized excitation; actually, it is not diffi
cult to see that it must be 0,g, 1

2 aD. In fact, in that case
V(f), that diverges exponentially to2` for f→2` and
linearly to 1` for f→1`, has a local maximum for a
~small! positive valuef* and a local minimum for a large
value off. These two values are given by the two solutio
of the equation (]/]f)UM5g. Then, solving the Newton-
type equation~11! with a ‘‘total energy’’ V(f* ), we have
eitherf[f* or f→f* for x→6`, with a localized region
wheref reaches a maximum; this maximum is given by t
value off, to the right of the local minimum, whereV(f)
5V(f* ). In this case, at the sides of the open region we a
have (]c/]x)→d22(A/B)f* ,0, i.e., a small uncoiling.
Summarizing, in order to have a static localized solution
constantd,0 is necessary.

We now go tov2.0 ~although sufficiently small since we
have made an expansion inv2). We rewrite Eq.~10! with
g50 ~i.e., d50):

c8
]2f

]x2
52

]

]f F2UM~f!12
A2

B2
v2f2G[2

]

]f
W~f!.

~12!

The differences from before are that the divergence ofW(f)
for f→1` is now quadratic, and, more important for o
argument, the local maximum is forf50. Therefore, it is
possible to have travelling localized excitations, at both si
of which the fieldf goes to 0, and so does the uncoilin
]c/]x.

us
1-7
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ALESSANDRO CAMPA PHYSICAL REVIEW E63 021901
Although we have used here a simplified model, it is ve
likely that in the complete system a very similar argume
applies. This should explain why in the simulations we fin
at the sides of the open region, normal twisting.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied a model of DNA with tw
degrees of freedom per base pair. The model has been
explicitly to represent the helicoidal structure of DNA@14#.
We have analytically shown that, under some uncoiling,
system exhibits stable equilibrium configurations in whi
there is a small region, of about 20 base pairs, where
hydrogen bond between complementary bases is comple
disrupted, allowing access to the genetic code. Then, thro
MD simulations, we have found that these open regions
travel along the DNA chain, also when both thermal no
and heterogeneity are present.

In connection with our results, we would like to mentio
what has been found in Ref.@25# concerning the statistica
mechanics of this model~the small differences in the Hamil
tonian of Ref.@25# should not be important for this qualita
tive point!. In that work the melting transition has been stu
ied. The isothermals in the plane with the thermodynam
variables corresponding to torque and uncoiling show cle
a first order phase transition~the computations are performe
for an infinite chain!; during the transition, in which the un
coiling increases at constant temperature and torque, the
coexisting phases are interpreted as one with normal dist
between the complementary bases, and one with the hy
gen bonds disrupted. At the end of the transition, only
phase with disrupted bonds remains. It is natural to think t
these two phases can be put in correspondence with the
possible equilibrium configurations that exist in a chain w
a degree of uncoiling, namely that with a bubble and t
without, taking into account that our simulations are p
formed at a temperature~or at a torque! below that required
for the melting transition.

We have noted in the preceding section that the travel
bubbles that have been generated in our simulations s
normal coiling at the sides of the open region, and in cor
spondence the hydrogen bond between complementary b
is at the equilibrium distance. This suggests the possibility
have more than one travelling bubble at the same time. T
fact resembles the situation that arises with kinks: only o
static kink can be present~and this is easy to understan
since the exact solution reaches the positions of the m
mum of the potential only asymptotically!, but for travelling
kinks the situation is different@28#. Therefore, this mode
allows transcription to take place at the same momen
different portions of the chain.

In the construction of nonlinear dynamical models of b
logical systems, one of the main properties to satisfy is
bustness of the relevant processes. This means that cha
at least within suitable ranges, of the external conditions
of the dynamics of the triggering events, or even of the
rameters of the effective potentials, must not result in ess
tial changes of the main features of the process under
sideration. The topological index of kinks cannot
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destroyed by perturbations or by thermal disorder, althou
of course, a kink can lose energy by phonon radiation@7#.
Breathers are nontopological objects, but some simulati
@29# have shown that they can survive perturbations. Ho
ever, the larger their energy, the larger their tendency to
main pinned@29,30#; besides, as we mentioned in the Intr
duction, if we look for a breather with a very larg
amplitude, as should be required to allow exposition of
genetic code, then we will not find a stable excitation.

The model used in this work, with two degrees of fre
dom per base pair, has shown to possess the positive fea
of both kinks and breathers: although there is no topolog
index to prevent eventual decay of the excitation, nevert
less the ‘‘transcription bubble’’ is quite stable. A necessa
condition for biological plausibility is that heterogenei
must not prevent propagation of the localized excitations
this class of models. We have seen that this is our case,
if certainly the life of the bubbles is shorter if the chain is n
homogeneous. We have argued that this is due to the
structure of the bubble: most of the sites belonging to it
in the plateau region of the Morse potential, where there
no differences between base pairs; only the few sites at
two ends of the bubble experience these differences.

We have chosen to generate the open region through
unwinding at one of the ends of the chain; this should sim
late the initial enzymatic action. We would like to say mo
on the spirit in which this position has been taken. The
have been attempts to see how breathers can form spon
ously during the dynamics, starting from modulational ins
bility, and then growing through collisions, that on the ave
age favor the growth of the larger excitations@30,31#. We
did not show similar results that we have obtained with t
model, concerning the formation of a bubble out of therm
excitation. However, this kind of process lacks any possi
ity of control about the particular group of sites where
begins to take place. Since it is certain that there is an en
matic control on the temporal and spatial beginning of
transcription, we have adopted the point of view of mimic
ing in some way this initial action. Another point to be note
is related to the energetics; in the real process of transcrip
enzymes are present all the time; this is in contrast with
strategy generally adopted, namely the study of simple
tonomous systems. However, one could argue that, if
autonomous system shows dynamical processes that alr
enjoy a good degree of stability, then the enzymatic dyna
cal action ~of course now we are not concerned with t
control activity!, that should increase this stability and the
the lifetime of the process, requires a relatively small amo
of energy.

At the beginning of the Introduction we pointed out th
these models are way too simple to represent faithfully
jects as complex as, in general, biological systems, and
their use is based, implicitly, on the assumption, or better
hope, that their dynamical properties can reproduce thos
the real system, at least the more important. We think t
this point is strongly connected with the problem of the r
bustness, previously mentioned with respect to chan
within the framework of the adopted model. In fact, as lo
as one believes to have captured the essential propertie
1-8
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BUBBLE PROPAGATION IN A HELICOIDAL . . . PHYSICAL REVIEW E 63 021901
the dynamics, one has also to be sure that an enrichme
the models, necessary to get closer to more complete des
tions, does not alter these properties. This is not a m
point: if the complexity of the structure of a dynamic
model increases, it probably becomes more difficult to fin
relatively ordered process as a travelling localized excitat
We think that this is one of the problems that deserve
efforts to be spent in future works.
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APPENDIX A: EQUILIBRIUM CONFIGURATIONS IN
HETEROGENEOUS CHAINS

Let us suppose that we have found an equilibrium c
figuration for a homogeneous chain with allDn’s equal to
DA–T . We now want to find the configuration for a chain
which some of theDn’s are instead equal toDG–C . We can
use the following procedure. We have to solve Eqs.~5! for
the given sequence of theDn’s. We rewrite the equations in
implicit form as

]U

]r n
50, ~A1a!

]U

]un
50. ~A1b!

Suppose to know the solution of~A1! for a certain sequenc
of the Dn’s. If we now haveDn→Dn1dDn , then we can
find, at the first order, the new solution by solving the line
system of equations:

]2U

]r n]Dn
dDn1(

m

]2U

]r n]xm
dxm50, ~A2a!

(
m

]2U

]un]xm
dxm50, n51, . . . ,N, ~A2b!

wherexm is the generic variable appearing inU, and in the
sums inm the only terms that will appear are those belong
to the same site or to the neighboring sites. In the lin
system~A2! the derivatives are to be computed in the o
equilibrium configuration, and it has to be solved with r
spect to thedxm . Although this will give the new configu-
ration only at first order, it is nevertheless possible to refi
the solution up to the desired degree of accuracy with ite
tive steps. If the values of]U/]r n and]U/]un , after solving
the system, are not yet equal to 0 within the chosen to
ance, then one can solve a system in which the terms
dDn in ~A2! @actually absent in~A2b!# are substituted by
those values. With a suitable choice for the variationdDn it
is then possible, repeating a sufficient number of times
procedure, to start from the solution of~A2! for Dn5DA–T
for eachn and find the solution in which any subset of th
Dn’s has becomeDG–C .
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APPENDIX B: EQUILIBRIUM CONFIGURATIONS WITH
A BUBBLE

To solve in general Eqs.~5! we start by posing

Ln11,n2L0

Ln11,n
r n11r n sinDun5s ~B1!

In principle from ~B1! one can haveDun5 f (r n11 ,r n ,s).
Substituting this function, forDun and Dun21, in ~5a!, one
can obtain an equationg(r n11 ,r n ,r n21 ,s)50. Choosing the
values of two contiguous sitesr m andr m11, the equilibrium
configuration can be computed site by site. But, without a
hint on the choice of the initial values forr m andr m11, it is
not possible to predict the structure along the chain of
configuration that will be found. It would be the analogous
computing a static solution of Eq.~1! with ‘‘initial condi-
tions’’ on f chosen at random: the solutionf(x) will be
oscillatory or will ~unphysically! diverge for x→1` or x
→2`; the localized solution such thatf(x)→f6 for x→
6`, wheref1 and f2 are two degenerate minima forU,
requires exactly given ‘‘initial conditions.’’ We will show
the way in which this problem can be solved and theref
how we can find a solution of Eqs.~5! constituting a nonto-
pological localized excitation.

As we said in Sec. II A, posingLn11,n5L̄ ~constant inn)
we find, from Eqs.~5!, an homogeneous equilibrium con
figuration with r n[r andDun5Du for given r andDu; we
consider here the caseL̄,L0, that gives r .R0 and Du
,Q0. Substituting in~B1! r n115r n5r and Dun5Du, to-
gether withLn11,n5L̄, we find the corresponding value ofs.
With this value ofs we now want to find a configuration
such thatr n→r and Dun→Du for n→6`, with an open
region in the middle. Then, forn→6` we write r n5r
1dr n and Dun5Du1dun , we substitute in~B1! and we
expand in power series ofdr n , dr n11, and dun , keeping
only the first order terms. Therefore we have a linear eq
tion from which we obtain

dun5g~dr n1dr n11!, ~B2!

where the coefficientg, that we do not write explicitly here
depends onr, Du, and the parameters of the model. At th
point we expand Eq.~5a! in power series ofdr n , dr n11 ,
dr n21 , dun and dun21, we keep only the first order term
and we substitutedun anddun21 from ~B2!. Then we obtain
dr n11 as a function ofdr n anddr n21, in the form

dr n115hdr n2dr n21 . ~B3!

Again, the coefficienth depends onr, Du, and the param-
eters of the model. What is of interest here, for what will
said in a moment, is that, whenr .R0 and Du,Q0, it is
alwaysh.2. If we now pose

drn5S dr n

dr n21D ~B4!

then from~B3!, we can derive the matrix equation
1-9
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drn115S h 21

1 0 D drn . ~B5!

The eigenvalues of the matrix in~B5! are given by

l65 1
2 @h6Ah224#. ~B6!

The eigenvalues are both real and positive sinceh.2, and
l251/l1 , the matrix determinant being 1. Thenl1.1
andl2,1. We are therefore assured that, if for a givenn0
we takedrn0

as the eigenvector corresponding tol1 , then

for n,n0 , dr n will tend exponentially to 0. Therefore, th
strategy is to take such adrn0

, obviously of very small modu-
lus to make the linear approximation in~B1! and ~5a! valid,
and then to computeDun andr n for n.n0 site by site from
the complete equation~5!. One will reach a maximum value
v

B

N.

02190
of r n for somen1, and forn.n1 , r n will decrease; only in
the cases wherer n1215r n111 or r n1

5r n111 a good localized

solution, with r n→r for n→1`, will be obtained. In the
first case we have an odd bubble, and in the second an
bubble. To fall in one of these two cases, it is sufficient
perform some attempts at adjusting the modulus of the in
vectordrn0

.

In this way, we have found that in a somewhat uncoil
chain (Dun,Q0) there is an equilibrium configuration with
r n→r .R0 andDun→Du,Q0 for n→6`, where inr the
hydrogen bond represented by the Morse potential is o
slightly stretched, and in the middler n is such that the hy-
drogen bond is completely broken~see Fig. 1!.

As already explained, the qualitative picture is n
changed in heterogeneous chains.
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